

L'ENTE ITALIANO DI A

LAB N° 0286

BECR			Prot. n. 205a/15/FG_rev03		
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando			Dale	11/11/2013

INDEX

	Number
TECHNICAL SHEETS	
DEFINITIONS AND ABBREVIATIONS	1
CALCULATIONS - EQUIVALENCE DETERMINATION	2
PLANT DESCRIPTION	3
COMPONENTS DATA SHEET	4
ANALYSIS LABORATORY AND STAFF	5
AUTOMATIC MEASUREMENT SYSTEM DESCRIPTION	6
REFERENCE MEASUREMENT SYSTEM DESCRIPTION	7
LEGISLATION AND REFERENCE METHODS	8
EQUIVALENCE TESTS RESULTS	9
AMS-SRM SAMPLINGS	10

TEST REPORTS

ANNEX A

All information about the description of the installation, operating conditions and the configuration of the automatic measurement system object of this document have been supplied by the customer.

This report only concerns the emissions monitoring system under check and can't be partially reproduced except prior written approval by Eco Chimica Romana S.r.I.

Laboratory responsible Order of Chemists Lazio – Umbria – Abruzzo – Molise Registration n.2012 Digitally signed document in accordance with current regulations

Dr. Fernando Conti

			Prot. n. 205a/15/FG_rev03		
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando	5		Dale	11/11/2013

INTRODUCTION

TECNOVA HT S.r.I. instructed **ECO CHIMICA ROMANA S.r.I.** to provide a verification, in accordance with ISO 8178-1:2006, of an automatic measurement system (hereafter called AMS) installed on exhaust flue gas stack coming from a DEUTZ test engine at Milantractor S.p.A. plant site in Tribiano (MI).

All sampling times below reported use the AMS clock.

The intervention has been performed between 18 – 21 May 2015.

In this document will be considered the equivalence test of NO_x parameter. However in the paper will be shows the samplings results (AMS and SRM) of all monitored parameters.

Rev.	Prot. n. 205a/15/FG_rev03	
Rev.	03	
Customer TECNOVA HT S.r.l. c/o Tribiano Plant Date 11/11 to Ing. Orlando Ing. Orlando Ing. Orlando Ing. Orlando Ing. Orlando Ing. Orlando	/2015	

TECHNICAL SHEET 1 - DEFINITIONS AND ABBREVIATIONS

AMS: Automated Measuring System. Measurement system for continuous monitoring of emissions. (<u>Candidate system</u>).

SRM:Standard Reference Method. Method described and standardised to define quality characteristics, temporarily installed on site for verification purposes. (<u>Reference system</u>).

03

Rev.

TECHNICAL SHEET 2 - CALCULATIONS - EQUIVALENCE DETERMINATION

c/o

TECNOVA HT S.r.I.

Ing. Orlando

The first part of ISO 8178:2006 specifies the measurement and evaluation methods for gaseous and particulate exhaust emissions from reciprocating internal combustion (RIC) engines under steady-state conditions on a test bed, necessary for determining one weighted value for each exhaust gas pollutant.

Systems or analyzers which do not meet the criteria described in ISO 8178 can still be used if they are equivalent as reported in Chapter 7. The determination of system equivalency shall be based on a seven-sample pair (or larger) correlation study between the system under consideration and one of the accepted systems of the first part of ISO 8178.

Results refers to the specific cycle weighted emissions value.

The equivalency of the sample pair averages shall be determined by *F*-test and *t*-test statistics (Annex D), with outliers excluded.

In this document will be considered the equivalence test of NO_x parameter.

The statistical method reported in the Annex D examines the hypothesis that the population standard deviation and mean value for an emission measured with the reference system do not differ from the standard deviation and population mean value for that emission measured with the candidate system.

The hypothesis shall be tested on the basis of a 5% significance level of the F and t values. The critical F and t values for 7 to 10 sample pairs are given in Table 1.

Sampla aiza	<i>F</i> -t	est	<i>t</i> -te	est
Sample size	df	F _{crit}	df	<i>t</i> _{crit}
7	6/6	4,284	12	2,179
8	7/7	3,787	14	2,145
9	8/8	3,438	16	2,120
10	9/9	3,179	18	2,101

Tab. 1

If the *F* and *t* values calculated according to the formula below are greater than the critical *F* and *t* values, the candidate system is not equivalent.

The following procedure shall be followed. The subscripts R and C refer to the reference and candidate system, respectively.

a) Conduct at least 7 tests with the candidate and reference systems preferably operated in parallel. The number of tests is referred to as n_R and n_C .

ECR			Prot. n. 205a/15	i/FG_rev03	
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando	30	Tholano Thant	Dale	11/11/2015

b) Calculate the mean values x_{R} and x_{C} and the standard deviations s_{R} and s_{C} , as follows:

Mean value

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$$

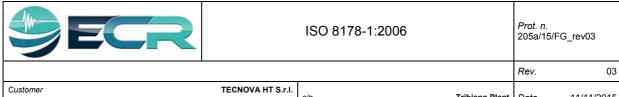
c) Calculate the *F* value, as follows:

$$F = \frac{s_{major}^2}{s_{\min or}^2}$$
 (the greater standard deviation shall be in the numerator)

d) Calculate the *t* value, as follows:

$$t = \frac{|x_{C} - x_{R}|}{\sqrt{(n_{C} - 1) \times s_{C}^{2} + (n_{R} - 1) \times s_{R}^{2}}} \times \sqrt{\frac{n_{C} \times n_{R} \times (n_{C} + n_{R} - 2)}{n_{C} + n_{R}}}$$

e) Compare the calculated F and t values with the Critical F and t values corresponding to the respective number of tests indicated in Table 1.


f) Determine the degrees of freedom (*df*), as follows:

$$df = \frac{n_R - 1}{n_C - 1}$$

$$df = n_C + n_R - 2$$

g) Determine the equivalence, as follows:

- if $F < F_{crit}$ and $t < t_{crit}$ then the candidate system is equivalent to the reference system;
- if $F \ge F_{crit}$ and $t \ge t_{crit}$ then the candidate system is different from the reference system.

to

c/o Ing. Orlando

TECHNICAL SHEET 3 - PLANT DESCRIPTION

PLANT GENERAL DATA		
Company name	TECNOVA HT S.r.I.	
Plant	TECNOVA HT S.r.I. c/o MILANTRACTOR S.p.A.	
Address	Via Pasubio, 2 20067 Tribiano - Milan	

POINT	OF EMISSION		
Technica	I Specifications		
Stack shape	Circular		
Internal stack diameter	0,8 m		
Outlet chimney height from the ground	11,3 m		
Sample plain height	8,87 m		
Fumes inlet height	4,87 m		
Flow rate (process conditions)	5.500 ÷ 15.000 m³/h		
Fumes temperature	200 ÷ 400 °C		
Indicative fu	imes composition		
H ₂ O 4 ÷ 5 % (v/v)			
O _{2 (dry gas)}	10 ÷ 15 % (v/v)		
CO _{2 (dry gas)}	4 ÷ 7,7 % (v/v)		
	tack fumes major pollutants		
CO _(dry gas)	70 ÷ 500 ppm		
NO _{x (dry gas)}	300 ÷ 1000 ppm		
SO _{2 (dry gas)}	4 ÷ 8 ppm		
Dust	5 ÷ 28 mg/m³		
COT _(dry gas)	230 ÷ 500 ppm		
Abaten	nent systems		
None			

FLANGES FEATURES			
Flanges number	4		
Flanges type and size	n. 3 DN65 PN6, n.1 DN100 PN6		

SAMPLING POINT ACCESSIBILITY

Step irons

Secr			Prot. n. 205a/15/FG_rev03		
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando	3	i i isiallo Fialit	Dale	17172015

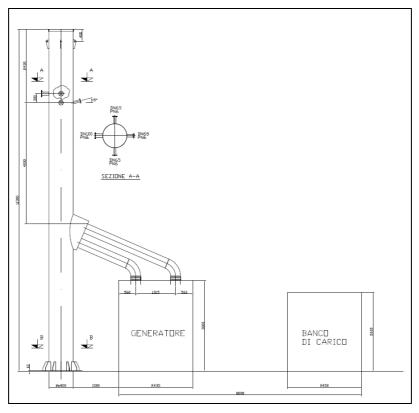


Fig. 1 - Stack layout

Fig. 2 - Working area

03

11/11/2015

Customer to

Rev.

TECHNICAL SHEET 4 – COMPONENTS DATA SHEET

c/o

TECNOVA HT S.r.l.

Ing. Orlando

ENGINE					
Model	TBD620V16G3				
Serial Number	2202756				
Manufactured	DEUTZ				
Rated speed	1500 / 1800 rpm				
Prime Power	1844 / 2508 kW				
Standby Power	1936 / 2633 kW				
Fuel	Diesel				
ALTERNAT	OR				
Model	LSA 51.2 L70				
Serial Number	168870/001				
Manufactured	LEROY SOMER				
Prime Power	2150 kVA				
Threephase Voltage	400 / 440 VAC				
GENERATING	S SET				
Prime Power Iso 8528	2.150 / 2.365 kVA				
Prime Power	1.720 / 1.892 kW				
Standby Power Iso 8528	2.255 / 2.480 kVA				
Standby Power	1.804 / 1.984 kW				
Threephase Voltage	400 / 440 VAC				
Frequency	50 / 60 Hz				
Fuel Consumption 100% Load	409 lt/h				
Fuel Tank Capacity	590 lt				
Version	Container				
Soundproofed	70 dB(A) a 7 m				
Lenght	12.190 mm				
Width	2.438 mm				
Height	2.591 mm				
Weight	26.000 kg				

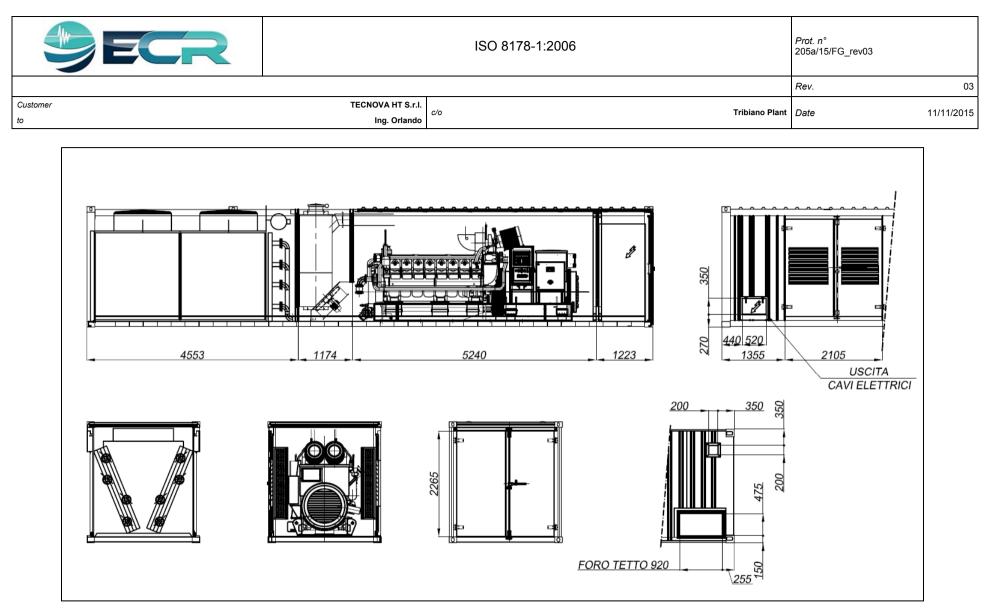


Fig. 3 - Container layout

ECR			Prot. n° 205a/15/FG_rev03		
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando		mblano i lan	Dale	11/11/2013

Fig. 4 - Working area

TECHNICAL SHEET 5 - ANALYSIS LABORATORY AND STAFF

LABORATORY GENERAL DATA			
Company name ECO CHIMICA ROMANA			
Address	Via Morsasco,71		
ZIP code	00166		
Place	Roma (RM)		

TECHNICIAN		
Technician in charge of the intervention Daniele Cotroneo		
Responsible	Daniele Cotroneo	

Customer to TECNOVA HT S.r.l. Ing. Orlando 03

Rev.

TECHNICAL SHEET 6 - AUTOMATED MEASURING SYSTEM (AMS)

c/o

AUTOMATED MEASURING SYSTEM FEATURES (AMS)						
S-KEEPER7 - FULL supplied by TECNOVA HT						
SYSTEM SUPPLIER	SYSTEM SUPPLIER MODEL DESCRIPTION					
FUJI ELECTRIC	ZPA	Extractive direct measurement multiparameter analyzer				
	ZFK7	ZrO ₂ - O ₂ analyzer				
	THERMO FID – SK7	Extractive direct measurement THC analyzer				
SINTROL	S710 Marine	Dust monitor				

ACQUISITION DATA SOFTWARE			
Supplier			
Frequency data availability 20 seconds			

SAMPLE LINE						
Plant	Ø line [mm]	Length [m]	Temperature [°C]	Use		
				CO, NO _x , CO ₂ , SO ₂		
DEUTZ ENGINE	4	15	190	O ₂		
				СОТ		

MONITORING CABINET			
Present/Absent Present			
nstallation height On the ground			

CABINET INSTRUMENTS OPERATIVE CONDITIONS			
Internal conditioning system Absent			
Calibration system	Manual		
Calibration cylinders Present			

ECR			Prot. n° 205a/15	5 5/FG_rev03	
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando		molano man	Dale	11/11/2013

	AMS FEATURES							
Parameter	Analyzer	In situ / extractive	Direct / indirect	Measuring principle	Units of measurement	Full scale		
Dust	SINTROL S710 Marine	In situ	I	Inductive electrification	raw	-		
O ₂	FUJI ELECTRIC ZFK7	E	D	ZrO ₂	%(v/v)	25		
NOx		E	D		ppm	2000		
SO ₂		E	D		ppm	2000		
CO	FUJI ELECTRIC ZPA	E	D	NDIR	ppm	2000		
CO ₂		E	D	1	%(v/v)	20		
THC	THERMO FID – SK7	E	D	FID	ppm	2000		

Fig. 5 - Measurement section

Secr			Prot. n 205a/1	。 5/FG_rev03	
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando		Tholano Thant	Dale	11/11/2013

Fig. 6 - S-KEEPER7 AMS

Fig. 7 - S-KEEPER7 AMS

03

Customer to TECNOVA HT S.r.l. Ing. Orlando Rev.

TECHNICAL SHEET - STANDARD REFERENCE METHOD (SRM)

Tested parameter	Test method
Dust	UNI EN 13284-1:2003
CO	UNI EN 15058:2006
CO2	EPA 3A:2006
NO _x	UNI EN 14792:2006
СОТ	UNI EN 12619:2013
SO ₂	UNI 10393:1995
Flow rate	UNI EN ISO 16911-1:2013
Temperature ⁽¹⁾ , Pressure ⁽¹⁾	UNI EN ISO 16911-1:2013
O ₂ ⁽¹⁾	UNI EN 14789:2006
H ₂ O ⁽¹⁾	UNI EN 14790:2006
⁽¹⁾ although not directly covered by the tests, are necessary for the c	perations of standardization and reference procedure.

STANDARD REFERENCE METHOD FEATURES (SRM)					
System supplier	Model	Detected Measuring principle		Full scale	
RATFISCH	RS53T	COT	FID	1000 ppm	
		Dust and moisture	Isokinetism	Only sampling	
TECORA	Isostack Basic HV ⁽²⁾	Flow rate	Differential pressure	3.556 Pa	
TECORA	ISOSTACK BASIC HV	Temperature	Thermocouple K (Cr-Ni)	1.200°C	
		Pressure	Piezoresistance	1.035 mbar	
		O ₂	Paramagnetic sensor	25 %(v/v)	
			NDIR	1000 ppm	
HORIBA	PG 250 ⁽³⁾	NO _x	Chemiluminescence	2500 ppm	
		CO ₂		20 %(v/v)	
		SO ₂	NDIR	200 ppm	

⁽²⁾ The mentioned devices are used only for the sampling, in particular under isokinetic conditions with regard to water and dust.

 $^{(3)}$ The determination of the nitrogen oxides (NO_x) as the sum of of NO and NO₂, was carried out using a catalytic converter NO₂/NO, which transforms the nitrogen dioxide to nitric oxide, by placing it first of the NO analyzer, and allows the determination as NO.

Where necessary, heated lines (150 – 180 °C) of appropriate length, cooling and gas dehydration systems, catalytic conversion systems (NO2 \rightarrow NO), gas dynamic dilution systems and everything else necessary to the correct application of the above descripted methods, have also been used. The full list of strumentation and accessories used during the test and the relative calibration reports, where applicable, is available at the laboratory.

Customer to TECNOVA HT S.r.l. Ing. Orlando

Tribiano Plant Date

03

Rev.

TECHNICAL SHEET 8 - NORMATIVE REFERENCES

PARAMETER	NORMATIVE	DESCRIPTION				
Measuring system	ISO 8178-1:2006	Reciprocating internal combustion engines – Exhaust emission measurement – Part 1: Test-bed measurement of gaseous and particulate exhaust emissions				
Dust	UNI EN 13284-1:2003	Stationary source emissions – Determination of low range mass concentration of dust – Manual gravimetric method				
Moisture (H ₂ O)	UNI EN 14790:2006	Stationary source emissions - Determination of the water vapour in ducts				
Oxygen (O ₂)	UNI EN 14789:2006	Stationary source emissions - Determination of volume concentration of oxygen (O2) - Reference method - Paramagnetism				
Carbon dioxide (CO ₂)	EPA 3A:2006	Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)				
Carbon monoxide (CO)	UNI EN 15058:2006	Stationary source emissions - Determination of the mass concentration of carbon monoxide (CO) - Reference method: Non-dispersive infrared spectrometry				
Sulphur dioxide (SO₂)	UNI 10393:1995	Instrumental method with direct extractive sampling for sulfur dioxide determination in conveyed gas flow				
Nitric oxides (NO _x)	UNI EN 14792:2006	Stationary source emissions - Determination of mass concentration of nitrogen oxides (NO _x) - Reference method: Chemiluminescence				
Total organic carbon (COT)	UNI EN 12619:2013	Stationary source emissions – Determination of the mass concentration of total gaseous organic carbon – Continuous flame ionisation detector method.				
Flow rate	UNI EN ISO 16911:2013 - Annex A	Stationary source emissions – Manual and automatic determination of velocity and volume flow rate in ducts – Part 1: Manual reference method				
Temperature - Pressure	UNI EN ISO 16911:2013 - Annex A	Stationary source emissions – Manual and automatic determination of velocity and volume flow rate in ducts – Part 1: Manual reference method				

			Prot. n° 205a/15/FG_rev03		
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando		morano mant	Dale	11/11/2015

STANDARD REFERENCE METHODS DETECTION LIMITS

As regards the detection limits of the reference methods (for a specific measurement method they are represented by the values below which the result can't be considered reliable due to the high degree of uncertainty), can be considered the values in the following table:

Parameter	Detection limit		
O ₂	0,08 % full scale		
CO ₂	0,01 % full scale		
СО	0,52 % full scale		
NO	0,08 % full scale		
SO ₂	0,11% full scale		
Dust	Depends on the sampled volume		
СОТ	0,16 mg/Nm ³		

The application of the detection limit of continuous and manual methods is different.

Regarding the continuous methods, for which the 10 minutes average value is the mean value of the validated elementary data (minute), the detection limit vary depending on the number of the elementary data that form the mean value and which are below the detection limit.

In practical terms, for a specific parameter, if the ith elementary data is below the detection limit, the 10 minutes average will be lower than the average determined by using, for the ith data, the detection limit.

With reference to manual methods the final result is determined as a ratio between a quantity (i.e. μ g of Cl⁻ ion) and the sampled gas volume. Then the detection limit, expressed as a final result, may vary depending of sampled gas volume, although the laboratory analytical determination is characterized by a unique detection limit.

ECR		ISO 8178-1:2006		Prot. n° 205a/15/	/FG_rev03
				Rev.	03
Customer	TECNOVA HT S.r.I.	c/o	Tribiano Plant	Date	11/11/2015
to	Ing. Orlando		Tholano Fiant	Date	11/11/2013

TECHNICAL SHEET 9 – EQUIVALENCE TESTS RESULTS

Following the detailed reports of the tests performed on the AMS Candidate system for NO_x parameter.

NOTICE TO THE READER

The following pages of the report are not made public because they contain confidential data owned by TECNOVA HT SrL

The full report is available only upon written request by the Customer or Certification Body